skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dugas, Alison"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Gyrochronology, a valuable tool for determining ages of low-mass stars where other techniques fail, relies on accurate calibration. We present a sample of 185 wide (>100 au) white dwarf + main sequence (WD + MS) binaries. Total ages of WDs are computed using all-sky survey photometry, Gaia parallaxes, and WD atmosphere models. Using a magnetic braking law calibrated against open clusters, along with assumptions about initial conditions and angular momentum transport, we construct gyrochrones to predict the rotation periods of MS stars. Both data and models show that, at the fully convective boundary (FCB), MS stars with WD ages of up to 7.5 Gyr and within a <50 K effective temperature range experience up to a threefold increase in rotation period relative to stars slightly cooler than the FCB. We suggest that rapid braking at this boundary is driven by a sharp rise in the convective overturn timescale (τcz) caused by structural changes between partially and fully convective stars and the3He instability occurring at this boundary. While the specific location in mass (or temperature) of this feature varies with model physics, we argue that its existence remains consistent. Stars along this feature exhibit rotation periods that can be mapped, within 1σ, to a range of gyrochrones spanning ≈6 Gyr. Due to current temperature errors (≃50 K), this implies that a measured rotation period cannot be uniquely associated to a single gyrochrone, implying that gyrochronology may not be feasible for M dwarfs very close to the FCB. 
    more » « less
  2. Abstract Eruptive mass loss of massive stars prior to supernova (SN) explosion is key to understanding their evolution and end fate. An observational signature of pre-SN mass loss is the detection of an early, short-lived peak prior to the radioactive-powered peak in the lightcurve of the SN. This is usually attributed to the SN shock passing through an extended envelope or circumstellar medium. Such an early peak is common for double-peaked Type IIb SNe with an extended hydrogen envelope but uncommon for normal Type Ibc SNe with very compact progenitors. In this paper, we systematically study a sample of 14 double-peaked Type Ibc SNe out of 475 Type Ibc SNe detected by the Zwicky Transient Facility. The rate of these events is ∼3%–9% of Type Ibc SNe. A strong correlation is seen between the peak brightness of the first and the second peak. We perform a holistic analysis of this sample’s photometric and spectroscopic properties. We find that six SNe have ejecta mass less than 1.5M. Based on the nebular spectra and lightcurve properties, we estimate that the progenitor masses for these are less than ∼12M. The rest have an ejecta mass >2.4Mand a higher progenitor mass. This sample suggests that the SNe with low progenitor masses undergo late-time binary mass transfer. Meanwhile, the SNe with higher progenitor masses are consistent with wave-driven mass loss or pulsation-pair instability-driven mass-loss simulations. 
    more » « less
  3. Abstract Among the supernovae (SNe) that show strong interaction with a circumstellar medium (CSM), there is a rare subclass of Type Ia supernovae, SNe Ia-CSM, which show strong narrow hydrogen emission lines much like SNe IIn but on top of a diluted Type Ia spectrum. The only previous systematic study of this class identified 16 SNe Ia-CSM, eight historic and eight from the Palomar Transient Factory (PTF). Now using the successor survey to PTF, the Zwicky Transient Facility (ZTF), we have classified 12 additional SNe Ia-CSM through the systematic Bright Transient Survey (BTS). Consistent with previous studies, we find these SNe to have slowly evolving optical light curves with peak absolute magnitudes between −19.1 and −21, spectra having weak Hβand large Balmer decrements of ∼7. Out of the 10 SNe from our sample observed by NEOWISE, nine have 3σdetections, with some SNe showing a reduction in the red wing of Hα, indicative of newly formed dust. We do not find our SN Ia-CSM sample to have a significantly different distribution of equivalent widths of Heiλ5876 than SNe IIn as observed in Silverman et al. The hosts tend to be late-type galaxies with recent star formation. We derive a rate estimate of 29 21 + 27 Gpc−3yr−1for SNe Ia-CSM, which is ∼0.02%–0.2% of the SN Ia rate. We also identify six ambiguous SNe IIn/Ia-CSM in the BTS sample and including them gives an upper limit rate of 0.07%–0.8%. This work nearly doubles the sample of well-studied Ia-CSM objects in Silverman et al., increasing the total number to 28. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)